Flatbed scanners generally deliver the best combination of quality, flexibility, and usability in scanning. They can be used to scan different kinds of media, including photos and film (with the additional use of a transparency adapter); they can be used to scan text for OCR and document archiving; and they can be used to scan material of varying sizes and thicknesses -- from small postage stamps to large mechanical blueprints and 3D objects.If you want to know about QR scanner please read this article.
To determine the flatbed scanner for your needs, this buying guide covers some of the more important flatbed scanner specifications that you will need to know.Bit depth and color passPractically all scanners today are single-pass types with 48-bit color. Gone are the scanners of yore that required three passes to capture the full RGB (red, green, blue) color information from an image in individual, painstakingly slow takes. Gone too are 24-bit and 36-bit scanners that proved sufficient in the past for delivering up to 68.7 billions of color.Today's single-pass, 48-bit scanners are fast and can theoretically capture up to 250 trillion colors -- clearly more color than the human eye can distinguish or what monitors and printers can reproduce -- but impressive nonetheless for the promise of yielding hues as close to life as possible and delivering smoother color gradations. Ignore all but single-pass scanners when shopping for a flatbed, and aim for 48-bit color as well. Consider lower-bit models (such as 42-bits) only if your scanner of choice has other specs that a higher-bit counterpart may not have -- such as patented technologies and special features -- that more than compensate for the lower bit depth of your selected model.ResolutionThe resolution of a scanner determines the level of detail that can be captured; the higher the resolution, the sharper the scan will be. There are two types of resolution: optical and interpolated, with optical resolution being the more important spec, as it relates to the scanner's actual optics and amount of information that it can sample. The interpolated resolution of a scanner is helpful only in specific applications -- such as scanning line art, where higher resolutions can even out jaggedness and produce smoother contours.Most flatbeds today feature respectable specs for optical resolution, ranging from 2400 dpi to 4800 dpi. Any scanner with such resolution figures would prove a respectable choice, since these specs are more than capable of delivering sharp detail or enlarging images for most print applications. Remember, too, that scanning your images in the full resolution of the scanner is likely to yield file sizes of unmanageable proportions -- without delivery any discernible benefit towards increasing image clarity or quality. So forget the resolution wars of the past when manufacturers trotted out their resolution specs to trump their closest rival. Instead, look for other features today in flatbeds that may be more important for your needs, or consider the resolution spec TOGETHER with these other features when choosing your choice of flatbed.